Simulation of Steady, Laminar Flow Over a Backward-Facing Step

نویسنده

  • Sagar Bhatt
چکیده

A 2D Navier-Stokes solver was developed to simulate steady,laminar flow over a backward-facing step of height h. The step expansion ratio=1/2 and the flow at the step was assumed to be fully developed, laminar channel flow. The Reynolds number for this flow was defined as Re=Uh/ν. The 2D incompressible Navier-Stokes equations was solved in generalized curvilinear coordinates using artificial compressibility method. A code was developed using MATLAB where three-point , second order finite differencing was used to discretize the convective and viscous fluxes in conjunction with scalar, fourth-difference, third-order artificial dissipation for stability. Dual time-stepping with a second-order backward scheme in real time and four stage Runge-Kutta time stepping was used for pseudo time. The flow was simulated for Reh=50, 100, 200, and 400. The streamlines were plotted in the steady-state. The results were compared with the experimental data obtained by Armaly et al.[2] and the numerical solutions obtained by Kim and Moin[11]. The effects of local time stepping, implicit residual smoothing and the CFL number are investigated on the rate of convergence of the time algorithm. The effect of artificial dissipation on the accuracy and stability of the solution is also investigated. The results are in agreement with the experimental and numerical solutions of Armaly et al. and Kim and Moin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three Dimensional Laminar Convection Flow of Radiating Gas over a Backward Facing Step in a Duct

In this study, three-dimensional simulations are presented for laminar forced convection flow of a radiating gas over a backward-facing step in rectangular duct. The fluid is treated as a gray, absorbing, emitting and scattering medium. The three-dimensional Cartesian coordinate system is used to solve the governing equations which are conservations of mass, momentum and energy. These equations...

متن کامل

Ivestigation of Entropy Generation in 3-D Laminar Forced Convection Flow over a Backward Facing Step with Bleeding

A numerical investigation of entropy generation in laminar forced convection of gas flow over a backward facing step in a horizontal duct under bleeding condition is presented. For calculation of entropy generation from the second law of thermodynamics in a forced convection flow, the velocity and temperature distributions are primary needed. For this purpose, the three-dimensional Cartesian co...

متن کامل

Numerical solutions of 2-D steady incompressible flow over a backward-facing step, Part I: High Reynolds number solutions

Numerical solutions of 2-D laminar flow over a backward-facing step at high Reynolds numbers are presented. The governing 2-D steady incompressible Navier–Stokes equations are solved with a very efficient finite difference numerical method which proved to be highly stable even at very high Reynolds numbers. Present solutions of the laminar flow over a backward-facing step are compared with expe...

متن کامل

LES/FMDF of premixed methane/air flow in a backward-facing step combustor

In the present study, a hybrid Eulerian-Lagrangian methodology is utilized for large eddy simulation (LES) of premixed fuel/air flow over a three-dimensional backward facing step (BFS). The fluid dynamic features are obtained by solving the Eulerian filtered compressible transport equations while the species are predicted by using the filtered mass density function method (FMDF).  Some scalar f...

متن کامل

Heat Transfer to Laminar Flow over a Double Backward-Facing Step

Heat transfer and laminar air flow over a double backward-facing step numerically studied in this paper. The simulations was performed by using ANSYS ICEM for meshing process and using ANSYS fluent 14 (CFD) for solving. The k-ɛ standard model adopted with Reynolds number varied between 98.5 to 512 and three step height at constant heat flux (q=2000 W/m2). The top of wall and bottom of upstream ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016